Publications

Association of Altered Liver Enzymes With Alzheimer Disease Diagnosis, Cognition, Neuroimaging Measures, and Cerebrospinal Fluid Biomarkers.
Nho K, Kueider-Paisley A, Ahmad S, MahmoudianDehkordi S, Arnold M, Risacher SL, Louie G, Blach C, Baillie R, Han X, Kastenmüller G, Trojanowski JQ, Shaw LM, Weiner MW, Doraiswamy PM, van Duijn C, Saykin AJ, Kaddurah-Daouk R; Alzheimer’s Disease Neuroimaging Initiative and the Alzheimer Disease Metabolomics Consortium.
JAMA Network Open. 2019 Jul 3;2(7):e197978. doi: 10.1001/jamanetworkopen.2019.7978.

Abstract:

Importance: Increasing evidence suggests an important role of liver function in the pathophysiology of Alzheimer disease (AD). The liver is a major metabolic hub; therefore, investigating the association of liver function with AD, cognition, neuroimaging, and CSF biomarkers would improve the understanding of the role of metabolic dysfunction in AD.

Objective: To examine whether liver function markers are associated with cognitive dysfunction and the “A/T/N” (amyloid, tau, and neurodegeneration) biomarkers for AD.

Design, Setting, and Participants: In this cohort study, serum-based liver function markers were measured from September 1, 2005, to August 31, 2013, in 1581 AD Neuroimaging Initiative participants along with cognitive measures, cerebrospinal fluid (CSF) biomarkers, brain atrophy, brain glucose metabolism, and amyloid-β accumulation. Associations of liver function markers with AD-associated clinical and A/T/N biomarkers were assessed using generalized linear models adjusted for confounding variables and multiple comparisons. Statistical analysis was performed from November 1, 2017, to February 28, 2019.

Exposures: Five serum-based liver function markers (total bilirubin, albumin, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase) from AD Neuroimaging Initiative participants were used as exposure variables.

Main Outcomes and Measures: Primary outcomes included diagnosis of AD, composite scores for executive functioning and memory, CSF biomarkers, atrophy measured by magnetic resonance imaging, brain glucose metabolism measured by fludeoxyglucose F 18 (18F) positron emission tomography, and amyloid-β accumulation measured by [18F]florbetapir positron emission tomography.

Results: Participants in the AD Neuroimaging Initiative (n = 1581; 697 women and 884 men; mean [SD] age, 73.4 [7.2] years) included 407 cognitively normal older adults, 20 with significant memory concern, 298 with early mild cognitive impairment, 544 with late mild cognitive impairment, and 312 with AD. An elevated aspartate aminotransferase (AST) to alanine aminotransferase (ALT) ratio and lower levels of ALT were associated with AD diagnosis (AST to ALT ratio: odds ratio, 7.932 [95% CI, 1.673-37.617]; P = .03; ALT: odds ratio, 0.133 [95% CI, 0.042-0.422]; P = .004) and poor cognitive performance (AST to ALT ratio: β [SE], -0.465 [0.180]; P = .02 for memory composite score; β [SE], -0.679 [0.215]; P = .006 for executive function composite score; ALT: β [SE], 0.397 [0.128]; P = .006 for memory composite score; β [SE], 0.637 [0.152]; P < .001 for executive function composite score). Increased AST to ALT ratio values were associated with lower CSF amyloid-β 1-42 levels (β [SE], -0.170 [0.061]; P = .04) and increased amyloid-β deposition (amyloid biomarkers), higher CSF phosphorylated tau181 (β [SE], 0.175 [0.055]; P = .02) (tau biomarkers) and higher CSF total tau levels (β [SE], 0.160 [0.049]; P = .02) and reduced brain glucose metabolism (β [SE], -0.123 [0.042]; P = .03) (neurodegeneration biomarkers). Lower levels of ALT were associated with increased amyloid-β deposition (amyloid biomarkers), and reduced brain glucose metabolism (β [SE], 0.096 [0.030]; P = .02) and greater atrophy (neurodegeneration biomarkers).

Conclusions and Relevance: Consistent associations of serum-based liver function markers with cognitive performance and A/T/N biomarkers for AD highlight the involvement of metabolic disturbances in the pathophysiology of AD. Further studies are needed to determine if these associations represent a causative or secondary role. Liver enzyme involvement in AD opens avenues for novel diagnostics and therapeutics.


Dynamic changes to lipid mediators support transitions among macrophage subtypes during muscle regeneration.
Giannakis N, Sansbury BE, Patsalos A, Hays TT, Riley CO, Han X, Spite M, Nagy L
Nature Immunology. 2019 May;20(5):626-636. doi: 10.1038/s41590-019-0356-7. Epub 2019 Apr 1.

Abstract:

Muscle damage elicits a sterile immune response that facilitates complete regeneration. Here, we used mass spectrometry-based lipidomics to map the mediator lipidome during the transition from inflammation to resolution and regeneration in skeletal muscle injury. We observed temporal regulation of glycerophospholipids and production of pro-inflammatory lipid mediators (for example, leukotrienes and prostaglandins) and specialized pro-resolving lipid mediators (for example, resolvins and lipoxins) that were modulated by ibuprofen. These time-dependent profiles were recapitulated in sorted neutrophils and Ly6Chi and Ly6Clo muscle-infiltrating macrophages, with a distinct pro-resolving signature observed in Ly6Clo macrophages. RNA sequencing of macrophages stimulated with resolvin D2 showed similarities to transcriptional changes found during the temporal transition from Ly6Chi macrophage to Ly6Clo macrophage. In vivo, resolvin D2 increased Ly6Clo macrophages and functional improvement of the regenerating muscle. These results reveal dynamic lipid mediator signatures of innate immune cells and provide a proof of concept for their exploitable effector roles in muscle regeneration.


AMP-activated protein kinase activation ameliorates eicosanoid dysregulation in high-fat-induced kidney disease in mice.
Declèves AE, Mathew AV, Armando AM, Han X, Dennis EA, Quehenberger O, Sharma K
Journal of Lipid Research. 2019 May;60(5):937-952. doi: 10.1194/jlr.M088690. Epub 2019 Mar 12.

Abstract:

High-fat diet (HFD) causes renal lipotoxicity that is ameliorated with AMP-activated protein kinase (AMPK) activation. Although bioactive eicosanoids increase with HFD and are essential in regulation of renal disease, their role in the inflammatory response to HFD-induced kidney disease and their modulation by AMPK activation remain unexplored. In a mouse model, we explored the effects of HFD on eicosanoid synthesis and the role of AMPK activation in ameliorating these changes. We used targeted lipidomic profiling with quantitative MS to determine PUFA and eicosanoid content in kidneys, urine, and renal arterial and venous circulation. HFD increased phospholipase expression as well as the total and free pro-inflammatory arachidonic acid (AA) and anti-inflammatory DHA in kidneys. Consistent with the parent PUFA levels, the AA- and DHA-derived lipoxygenase (LOX), cytochrome P450, and nonenzymatic degradation (NE) metabolites increased in kidneys with HFD, while EPA-derived LOX and NE metabolites decreased. Conversely, treatment with 5-aminoimidazole-4-carboxamide-1-β-D-furanosyl 5′-monophosphate (AICAR), an AMPK activator, reduced the free AA and DHA content and the DHA-derived metabolites in kidney. Interestingly, kidney and circulating AA, AA metabolites, EPA-derived LOX, and NE metabolites are increased with HFD; whereas, DHA metabolites are increased in kidney in contrast to their decreased circulating levels with HFD. Together, these changes showcase HFD-induced pro- and anti-inflammatory eicosanoid dysregulation and highlight the role of AMPK in correcting HFD-induced dysregulated eicosanoid pathways.


Cell-autonomous and non-autonomous roles of daf-16 in muscle function and mitochondrial capacity in aging C. elegans.
Wang H#, Webster P#, Chen L, Fisher AL
Aging (Albany NY). 2019 Apr 24;11(8):2295-2311. doi: 10.18632/aging.101914.

Abstract:

Sarcopenia, defined as the loss of skeletal muscle mass and strength, contributes to disability and health-related conditions with aging. In vitro studies indicate that age-related mitochondrial dysfunction could play a central role in the development and progression of sarcopenia, but because of limitations in the methods employed, how aging affects muscle mitochondrial function in vivo is not fully understood. We use muscle-targeted fluorescent proteins and the ratiometric ATP reporter, ATeam, to examine changes in muscle mitochondrial mass and morphology, and intracellular ATP levels in C. elegans. We find that the preserved muscle function in aging daf-2 mutants is associated with higher muscle mitochondrial mass, preserved mitochondrial morphology, and higher levels of intracellular ATP. These phenotypes require the daf-16/FOXO transcription factor. Via the tissue-specific rescue of daf-16, we find that daf-16 activity in either muscle or neurons is sufficient to enhance muscle mitochondrial mass, whereas daf-16 activity in the muscle is required for the enhanced muscle function and mobility of the daf-2 mutants. Finally, we show through the use of drugs known to enhance mitochondrial activity that augmenting mitochondrial function leads to improved mobility during aging. These results suggest an important role for mitochondrial function in muscle aging.


Hyperadrenocorticism of calorie restriction contributes to its anti-inflammatory action in mice.
Allen BD, Liao CY, Shu J, Muglia LJ, Majzoub JA, Diaz V, Nelson JF
Aging Cell. 2019 Jun;18(3):e12944. doi: 10.1111/acel.12944. Epub 2019 Apr 1.

Abstract:

Calorie restriction (CR), which lengthens lifespan in many species, is associated with moderate hyperadrenocorticism and attenuated inflammation. Given the anti-inflammatory action of glucocorticoids, we tested the hypothesis that the hyperadrenocorticism of CR contributes to its attenuated inflammatory response. We used a corticotropin-releasing-hormone knockout (CRHKO) mouse, which is glucocorticoid insufficient. There were four controls groups: CRHKO mice and wild-type (WT) littermates fed either ad libitum (AL) or CR (60% of AL food intake), and three experimental groups: (a) AL-fed CRHKO mice given corticosterone (CORT) in their drinking water titrated to match the integrated 24-hr plasma CORT levels of AL-fed WT mice, (b) CR-fed CRHKO mice given CORT to match the 24-hr CORT levels of AL-fed WT mice, and (c) CR-fed CHRKO mice given CORT to match the 24-hr CORT levels of CR-fed WT mice. Inflammation was measured volumetrically as footpad edema induced by carrageenan injection. As previously observed, CR attenuated footpad edema in WT mice. This attenuation was significantly blocked in CORT-deficient CR-fed CRHKO mice. Replacement of CORT in CR-fed CRHKO mice to the elevated levels observed in CR-fed WT mice, but not to the levels observed in AL-fed WT mice, restored the anti-inflammatory effect of CR. These results indicate that the hyperadrenocorticism of CR contributes to the anti-inflammatory action of CR, which may in turn contribute to its life-extending actions.


Phosphatidylethanolamine made in the inner mitochondrial membrane is essential for yeast cytochrome bc1 complex function.
Calzada E, Avery E, Sam PN, Modak A, Wang C, McCaffery JM, Han X, Alder NN, Claypool SM
Nature Communications. 2019 Mar 29;10(1):1432. doi: 10.1038/s41467-019-09425-1.

Abstract:

Of the four separate PE biosynthetic pathways in eukaryotes, one occurs in the mitochondrial inner membrane (IM) and is executed by phosphatidylserine decarboxylase (Psd1). Deletion of Psd1 is lethal in mice and compromises mitochondrial function. We hypothesize that this reflects inefficient import of non-mitochondrial PE into the IM. Here, we test this by re-wiring PE metabolism in yeast by re-directing Psd1 to the outer mitochondrial membrane or the endomembrane system and show that PE can cross the IMS in both directions. Nonetheless, PE synthesis in the IM is critical for cytochrome bc1 complex (III) function and mutations predicted to disrupt a conserved PE-binding site in the complex III subunit, Qcr7, impair complex III activity similar to PSD1 deletion. Collectively, these data challenge the current dogma of PE trafficking and demonstrate that PE made in the IM by Psd1 support the intrinsic functionality of complex III.


Hepatic posttranscriptional network comprised of CCR4-NOT deadenylase and FGF21 maintains systemic metabolic homeostasis
Morita M, Siddiqui N, Katsumura S, Rouya C, Larsson O, Nagashima T, Hekmatnejad B, Takahashi A, Kiyonari H, Zang M, St-Arnaud R, Oike Y, Giguère V, Topisirovic I, Okada-Hatakeyama M, Yamamoto T, Sonenberg N
PNAS. 2019 Apr 16;116(16):7973-7981. doi: 10.1073/pnas.1816023116. Epub 2019 Mar 29.

Abstract

Whole-body metabolic homeostasis is tightly controlled by hormone-like factors with systemic or paracrine effects that are derived from nonendocrine organs, including adipose tissue (adipokines) and liver (hepatokines). Fibroblast growth factor 21 (FGF21) is a hormone-like protein, which is emerging as a major regulator of whole-body metabolism and has therapeutic potential for treating metabolic syndrome. However, the mechanisms that control FGF21 levels are not fully understood. Herein, we demonstrate that FGF21 production in the liver is regulated via a posttranscriptional network consisting of the CCR4-NOT deadenylase complex and RNA-binding protein tristetraprolin (TTP). In response to nutrient uptake, CCR4-NOT cooperates with TTP to degrade AU-rich mRNAs that encode pivotal metabolic regulators, including FGF21. Disruption of CCR4-NOT activity in the liver, by deletion of the catalytic subunit CNOT6L, increases serum FGF21 levels, which ameliorates diet-induced metabolic disorders and enhances energy expenditure without disrupting bone homeostasis. Taken together, our study describes a hepatic CCR4-NOT/FGF21 axis as a hitherto unrecognized systemic regulator of metabolism and suggests that hepatic CCR4-NOT may serve as a target for devising therapeutic strategies in metabolic syndrome and related morbidities.


Defective Phosphatidylglycerol Remodeling Causes Hepatopathy, Linking Mitochondrial Dysfunction to Hepatosteatosis.
Zhang X, Zhang J, Sun H, Liu X, Zheng Y, Xu D, Wang J, Jia D, Han X, Liu F, Nie J, Shi Y
Cellular and Molecular Gastroenterology and Hepatology. 2019;7(4):763-781. doi: 10.1016/j.jcmgh.2019.02.002. Epub 2019 Mar 1.

Abstract:

BACKGROUND & AIMS: Obesity promotes the development of nonalcoholic fatty liver diseases (NAFLDs), yet not all obese patients develop NAFLD. The underlying causes for this discrepancy remain elusive. LPGAT1 is an acyltransferase that catalyzes the remodeling of phosphatidylglycerol (PG), a mitochondrial phospholipid implicated in various metabolic diseases. Here, we investigated the role of LPGAT1 in regulating the onset of diet-induced obesity and its related hepatosteatosis because polymorphisms of the LPGAT1 gene promoter were strongly associated with susceptibility to obesity in Pima Indians.

METHODS: Mice with whole-body knockout of LPGAT1 were generated to investigate the role of PG remodeling in NAFLD.

RESULTS: LPGAT1 deficiency protected mice from diet-induced obesity, but led to hepatopathy, insulin resistance, and NAFLD as a consequence of oxidative stress, mitochondrial DNA depletion, and mitochondrial dysfunction.

CONCLUSIONS: This study identified an unexpected role of PG remodeling in obesity, linking mitochondrial dysfunction to NAFLD.


Age-related changes in the marmoset gut microbiome
Reveles KR, Patel S, Forney L, Ross CN
American Journal of Primatology. 2019 Feb;81(2):e22960. doi: 10.1002/ajp.22960. Epub 2019 Feb 25.

Abstract

The gut microbiome is known to play a significant role in human health but its role in aging remains unclear. The objective of this study was to compare the gut microbiome composition between young adult and geriatric non-human primates (marmosets) as a model of human health and disease. Stool samples were collected from geriatric (8+ years) and young adult males (2-5 years). Stool 16S ribosomal RNA V4 sequences were amplified and sequenced on the Illumina MiSeq platform. Sequences were clustered into operational taxonomic units and classified via Mothur’s Bayesian classifier referenced against the Greengenes database. A total of 10 young adult and 10 geriatric marmosets were included. Geriatric marmosets had a lower mean Shannon diversity compared with young marmosets (3.15 vs. 3.46; p = 0.0191). Geriatric marmosets had a significantly higher mean abundance of Proteobacteria (0.22 vs. 0.09; p = 0.0233) and lower abundance of Firmicutes (0.15 vs. 0.19; p = 0.0032) compared with young marmosets. Geriatric marmosets had a significantly higher abundance of Succinivibrionaceae (0.16 vs. 0.01; p = 0.0191) and lower abundance of Porphyromonadaceae (0.07 vs. 0.11; p = 0.0494). In summary, geriatric marmosets had significantly altered microbiome diversity and composition compared with young adult marmosets. Further studies are needed to test microbiome-targeted therapies to improve healthspan and lifespan.


Hepatocyte-Macrophage Acetoacetate Shuttle Protects against Tissue Fibrosis.
Puchalska P, Martin SE, Huang X, Lengfeld JE, Daniel B, Graham MJ, Han X, Nagy L, Patti GJ, Crawford PA
Cell Metabolism. 2019 Feb 5;29(2):383-398.e7. doi: 10.1016/j.cmet.2018.10.015. Epub 2018 Nov 15.

Abstract:

Metabolic plasticity has been linked to polarized macrophage function, but mechanisms connecting specific fuels to tissue macrophage function remain unresolved. Here we apply a stable isotope tracing, mass spectrometry-based untargeted metabolomics approach to reveal the metabolome penetrated by hepatocyte-derived glucose and ketone bodies. In both classically and alternatively polarized macrophages, [13C]acetoacetate (AcAc) labeled ∼200 chemical features, but its reduced form D-[13C]β-hydroxybutyrate (D-βOHB) labeled almost none. [13C]glucose labeled ∼500 features, and while unlabeled AcAc competed with only ∼15% of them, the vast majority required the mitochondrial enzyme succinyl-coenzyme A-oxoacid transferase (SCOT). AcAc carbon labeled metabolites within the cytoplasmic glycosaminoglycan pathway, which regulates tissue fibrogenesis. Accordingly, livers of mice lacking SCOT in macrophages were predisposed to accelerated fibrogenesis. Exogenous AcAc, but not D-βOHB, ameliorated diet-induced hepatic fibrosis. These data support a hepatocyte-macrophage ketone shuttle that segregates AcAc from D-βOHB, coordinating the fibrogenic response to hepatic injury via mitochondrial metabolism in tissue macrophages.


Filter publications