Publications

Long-term treatment with the mTOR inhibitor rapamycin has minor effect on clinical laboratory markers in middle-aged marmosets.
Sills AM, Artavia JM, DeRosa BD, Ross CN, Salmon AB
American Journal of Primatology. 2018 Oct 12:e22927. doi: 10.1002/ajp.22927. [Epub ahead of print].

Abstract:

Interventions to extend lifespan and improve health with increasing age would have significant impact on a growing aged population. There are now several pharmaceutical interventions that extend lifespan in laboratory rodent models with rapamycin, an inhibitor of mechanistic target of rapamycin (mTOR) being the most well studied. In this study, we report on the hematological effects in a cohort of middle-aged common marmosets (Callithrix jacchus) that were enrolled in a study to test the effects of daily rapamycin treatment on aging in this species. In addition, we assessed whether sex was a significant factor in either baseline assessment or as an interaction with rapamycin treatment. Among our cohort at baseline, we found few differences in either basic morphology or hematological markers of blood cell counts, metabolism or inflammation between male and female marmosets. After dosing with rapamycin, surprisingly we found trough blood concentrations of rapamycin were significantly lower in female compared to male marmosets. Despite this pharmacological difference, both sexes had only minor changes in cellular blood counts after 9 months of rapamycin. These data then suggest that the potential clinical hematological side effects of rapamycin are not likely outcomes of long-term rapamycin in relatively healthy, middle-aged marmosets.


Microtubules and axon regeneration in C. elegans.
Chen L
Molecular and Cellular Neurosciences. 2018 Sep;91:160-166. doi: 10.1016/j.mcn.2018.03.007. Epub 2018 Mar 16.

Abstract:

Axon regeneration is a fundamental and conserved process that allows the nervous system to repair circuits after trauma. Due to its conserved genome, transparent body, and relatively simple neuroanatomy, C. elegans has become a powerful model organism for studying the cellular and molecular mechanisms underlying axon regeneration. Various studies from different model organisms have found microtubule dynamics to be pivotal to axon regrowth. In this review, we will discuss the latest findings on how microtubule dynamics are regulated during axon regeneration in C. elegans. Understanding the mechanisms of axon regeneration will aid in the development of more effective therapeutic strategies for treatments of diseases involving disconnection of axons, such as spinal cord injury and stroke.


Tau protein aggregation is associated with cellular senescence in the brain.
Musi N, Valentine JM, Sickora KR, Baeuerle E, Thompson CS, Shen Q, Orr ME
Aging Cell. 2018 Aug 20:e12840. doi: 10.1111/acel.12840. [Epub ahead of print]

Abstract:

Tau protein accumulation is the most common pathology among degenerative brain diseases, including Alzheimer’s disease (AD), progressive supranuclear palsy (PSP), traumatic brain injury (TBI) and over twenty others. Tau‐containing neurofibrillary tangle (NFT) accumulation is the closest correlate with cognitive decline and cell loss (Arriagada et al., 1992), yet mechanisms mediating tau toxicity are poorly understood. NFT formation does not induce apoptosis (de Calignon et al., 2009), which suggests secondary mechanisms are driving toxicity. Transcriptomic analyses of NFT‐containing neurons microdissected from postmortem AD brain revealed an expression profile consistent with cellular senescence. This complex stress response induces aberrant cell cycle activity, adaptations to maintain survival, cellular remodeling, and metabolic dysfunction. Using four AD transgenic mouse models, we found that NFTs, but not Aβ plaques, display a senescence‐like phenotype. Cdkn2a transcript level, a hallmark measure of senescence, directly correlated with brain atrophy and NFT burden in mice. This relationship extended to postmortem brain tissue from humans with PSP to indicate a phenomenon common to tau toxicity. Tau transgenic mice with late stage pathology were treated with senolytics to remove senescent cells. Despite the advanced age and disease progression, MRI brain imaging and histopathological analyses indicated a reduction in total NFT density, neuron loss and ventricular enlargement. Collectively, these findings indicate a strong association between the presence of NFTs and cellular senescence in the brain, which contributes to neurodegeneration. Given the prevalence of tau protein deposition among neurodegenerative diseases, these findings have broad implications for understanding, and potentially treating, dozens of brain diseases.


Thioredoxin overexpression in both the cytosol and mitochondria accelerates age-related disease and shortens lifespan in male C57BL/6 mice.
Cunningham GM, Flores LC, Roman MG, Cheng C, Dube S, Allen C, Valentine JM, Hubbard GB, Bai Y, Saunders TL, Ikeno Y
Geroscience. 2018 Aug 18. doi: 10.1007/s11357-018-0039-6. [Epub ahead of print]

Abstract:

To investigate the role of increased levels of thioredoxin (Trx) in both the cytosol (Trx1) and mitochondria (Trx2) on aging, we have conducted a study to examine survival and age-related diseases using male mice overexpressing Trx1 and Trx2 (TXNTg × TXN2Tg). Our study demonstrated that the upregulation of Trx in both the cytosol and mitochondria in male TXNTg × TXN2Tg C57BL/6 mice resulted in a significantly shorter lifespan compared to wild-type (WT) mice. Cross-sectional pathology data showed a slightly higher incidence of neoplastic diseases in TXNTg × TXN2Tg mice than WT mice. The incidence of lymphoma, a major neoplastic disease in C57BL/6 mice, was slightly higher in TXNTg × TXN2Tg mice than in WT mice, and more importantly, the severity of lymphoma was significantly higher in TXNTg × TXN2Tg mice compared to WT mice. Furthermore, the total number of histopathological changes in the whole body (disease burden) was significantly higher in TXNTg × TXN2Tg mice compared to WT mice. Therefore, our study suggests that overexpression of Trx in both the cytosol and mitochondria resulted in deleterious effects on aging and accelerated the development of age-related diseases, especially cancer, in male C57BL/6 mice.


DEP domain-containing mTOR-interacting protein suppresses lipogenesis and ameliorates hepatic steatosis and acute-on-chronic liver injury in alcoholic liver disease
Chen H, Shen F, Sherban A, Nocon A, Li Y, Wang H, Xu MJ, Rui X, Han J, Jiang B, Lee D, Li N, Keyhani-Nejad F, Fan JG, Liu F, Kamat A, Musi N, Guarente L, Pacher P, Gao B, Zang M
Hepatology. 2018 Aug;68(2):496-514. doi: 10.1002/hep.29849. Epub 2018 May 21.
PMCID: PMC6097912

Abstract:

Alcoholic liver disease (ALD) is characterized by lipid accumulation and liver injury. However, how chronic alcohol consumption causes hepatic lipid accumulation remains elusive. The present study demonstrates that activation of the mechanistic target of rapamycin complex 1 (mTORC1) plays a causal role in alcoholic steatosis, inflammation, and liver injury. Chronic-plus-binge ethanol feeding led to hyperactivation of mTORC1, as evidenced by increased phosphorylation of mTOR and its downstream kinase S6 kinase 1 (S6K1) in hepatocytes. Aberrant activation of mTORC1 was likely attributed to the defects of the DEP domain-containing mTOR-interacting protein (DEPTOR) and the nicotinamide adenine dinucleotide-dependent deacetylase sirtuin 1 (SIRT1) in the liver of chronic-plus-binge ethanol-fed mice and in the liver of patients with ALD. Conversely, adenoviral overexpression of hepatic DEPTOR suppressed mTORC1 signaling and ameliorated alcoholic hepatosteatosis, inflammation, and acute-on-chronic liver injury. Mechanistically, the lipid-lowering effect of hepatic DEPTOR was attributable to decreased proteolytic processing, nuclear translocation, and transcriptional activity of the lipogenic transcription factor sterol regulatory element-binding protein-1 (SREBP-1). DEPTOR-dependent inhibition of mTORC1 also attenuated alcohol-induced cytoplasmic accumulation of the lipogenic regulator lipin 1 and prevented alcohol-mediated inhibition of fatty acid oxidation. Pharmacological intervention with rapamycin alleviated the ability of alcohol to up-regulate lipogenesis, to down-regulate fatty acid oxidation, and to induce steatogenic phenotypes. Chronic-plus-binge ethanol feeding led to activation of SREBP-1 and lipin 1 through S6K1-dependent and independent mechanisms. Furthermore, hepatocyte-specific deletion of SIRT1 disrupted DEPTOR function, enhanced mTORC1 activity, and exacerbated alcoholic fatty liver, inflammation, and liver injury in mice.

Conclusion:

The dysregulation of SIRT1-DEPTOR-mTORC1 signaling is a critical determinant of ALD pathology; targeting SIRT1 and DEPTOR and selectively inhibiting mTORC1-S6K1 signaling may have therapeutic potential for treating ALD in humans. (Hepatology 2018).


Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies.
Sun W, Samimi H, Gamez M, Zare H, Frost B
Nature Neuroscience. 2018 Aug;21(8):1038-1048. doi: 10.1038/s41593-018-0194-1. Epub 2018 Jul 23.
PMCID: PMC6095477

Abstract

Transposable elements, known colloquially as ‘jumping genes’, constitute approximately 45% of the human genome. Cells utilize epigenetic defenses to limit transposable element jumping, including formation of silencing heterochromatin and generation of piwi-interacting RNAs (piRNAs), small RNAs that facilitate clearance of transposable element transcripts. Here we utilize Drosophila melanogaster and postmortem human brain samples to identify transposable element dysregulation as a key mediator of neuronal death in tauopathies, a group of neurodegenerative disorders that are pathologically characterized by deposits of tau protein in the brain. Mechanistically, we find that heterochromatin decondensation and reduction of piwi and piRNAs drive transposable element dysregulation in tauopathy. We further report a significant increase in transcripts of the endogenous retrovirus class of transposable elements in human Alzheimer’s disease and progressive supranuclear palsy, suggesting that transposable element dysregulation is conserved in human tauopathy. Taken together, our data identify heterochromatin decondensation, piwi and piRNA depletion and consequent transposable element dysregulation as a pharmacologically targetable, mechanistic driver of neurodegeneration in tauopathy.


Hepatic ketogenic insufficiency reprograms hepatic glycogen metabolism and the lipidome.
d’Avignon DA, Puchalska P, Ercal B, Chang Y, Martin SE, Graham MJ, Patti GJ, Han X, Crawford PA
JCI Insight. 2018 Jun 21;3(12). pii: 99762. doi: 10.1172/jci.insight.99762. [Epub ahead of print]

Abstract:

While several molecular targets are under consideration, mechanistic underpinnings of the transition from uncomplicated nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitis (NASH) remain unresolved. Here we apply multiscale chemical profiling technologies to mouse models of deranged hepatic ketogenesis to uncover potential NAFLD driver signatures. Use of stable-isotope tracers, quantitatively tracked by nuclear magnetic resonance (NMR) spectroscopy, supported previous observations that livers of wild-type mice maintained long term on a high-fat diet (HFD) exhibit a marked increase in hepatic energy charge. Fed-state ketogenesis rates increased nearly 3-fold in livers of HFD-fed mice, a greater proportionate increase than that observed for tricarboxylic acid (TCA) cycle flux, but both of these contributors to overall hepatic energy homeostasis fueled markedly increased hepatic glucose production (HGP). Thus, to selectively determine the role of the ketogenic conduit on HGP and oxidative hepatic fluxes, we studied a ketogenesis-insufficient mouse model generated by knockdown of the mitochondrial isoform of 3-hydroxymethylglutaryl-CoA synthase (HMGCS2). In response to ketogenic insufficiency, TCA cycle flux in the fed state doubled and HGP increased more than 60%, sourced by a 3-fold increase in glycogenolysis. Finally, high-resolution untargeted metabolomics and shotgun lipidomics performed using ketogenesis-insufficient livers in the fed state revealed accumulation of bis(monoacylglycero)phosphates, which also accumulated in livers of other models commonly used to study NAFLD. In summary, natural and interventional variations in ketogenesis in the fed state strongly influence hepatic energy homeostasis, glucose metabolism, and the lipidome. Importantly, HGP remains tightly linked to overall hepatic energy charge, which includes both terminal fat oxidation through the TCA cycle and partial oxidation via ketogenesis.


Hydrogen sulfide ameliorates aging-associated changes in the kidney.
Lee HJ, Feliers D, Barnes JL, Oh S, Choudhury GG2, Diaz V, Galvan V, Strong R, Nelson J, Salmon A, Kevil CG, Kasinath BS
Geroscience. 2018 Apr;40(2):163-176. doi: 10.1007/s11357-018-0018-y. Epub 2018 May 1.
PMCID: PMC5964063

Abstract:

Aging is associated with replacement of normal kidney parenchyma by fibrosis. Because hydrogen sulfide (H2S) ameliorates kidney fibrosis in disease models, we examined its status in the aging kidney. In the first study, we examined kidney cortical H2S metabolism and signaling pathways related to synthesis of proteins including matrix proteins in young and old male C57BL/6 mice. In old mice, increase in renal cortical content of matrix protein involved in fibrosis was associated with decreased H2S generation and AMPK activity, and activation of insulin receptor (IR)/IRS-2-Akt-mTORC1-mRNA translation signaling axis that can lead to increase in protein synthesis. In the second study, we randomized 18-19 month-old male C57BL/6 mice to receive 30 μmol/L sodium hydrosulfide (NaHS) in drinking water vs. water alone (control) for 5 months. Administration of NaHS increased plasma free sulfide levels. NaHS inhibited the increase in kidney cortical content of matrix proteins involved in fibrosis and ameliorated glomerulosclerosis. NaHS restored AMPK activity and inhibited activation of IR/IRS-2-Akt-mTORC1-mRNA translation axis. NaHS inhibited age-related increase in kidney cortical content of p21, IL-1β, and IL-6, components of the senescence-associated secretory phenotype. NaHS abolished increase in urinary albumin excretion seen in control mice and reduced serum cystatin C levels suggesting improved glomerular clearance function. We conclude that aging-induced changes in the kidney are associated with H2S deficiency. Administration of H2S ameliorates aging-induced kidney changes probably by inhibiting signaling pathways leading to matrix protein synthesis.


Inhibition of mTOR protects the blood-brain barrier in models of Alzheimer’s disease and vascular cognitive impairment.
Van Skike CE, Jahrling JB, Olson AB, Sayre NL, Hussong SA, Ungvari Z, Lechleiter JD, Galvan V
Am J Physiol Heart Circ Physiol. 2018 Apr 1;314(4):H693-H703. doi: 10.1152/ajpheart.00570.2017. Epub 2017 Dec 22.

Abstract:

An intact blood-brain barrier (BBB) limits entry of proinflammatory and neurotoxic blood-derived factors into the brain parenchyma. The BBB is damaged in Alzheimer’s disease (AD), which contributes significantly to the progression of AD pathologies and cognitive decline. However, the mechanisms underlying BBB breakdown in AD remain elusive, and no interventions are available for treatment or prevention. We and others recently established that inhibition of the mammalian/mechanistic target of rapamycin (mTOR) pathway with rapamycin yields significant neuroprotective effects, improving cerebrovascular and cognitive function in mouse models of AD. To test whether mTOR inhibition protects the BBB in neurological diseases of aging, we treated hAPP(J20) mice modeling AD and low-density lipoprotein receptor-null (LDLR-/-) mice modeling vascular cognitive impairment with rapamycin. We found that inhibition of mTOR abrogates BBB breakdown in hAPP(J20) and LDLR-/- mice. Experiments using an in vitro BBB model indicated that mTOR attenuation preserves BBB integrity through upregulation of specific tight junction proteins and downregulation of matrix metalloproteinase-9 activity. Together, our data establish mTOR activity as a critical mediator of BBB breakdown in AD and, potentially, vascular cognitive impairment and suggest that rapamycin and/or rapalogs could be used for the restoration of BBB integrity. NEW & NOTEWORTHY This report establishes mammalian/mechanistic target of rapamycin as a critical mediator of blood-brain barrier breakdown in models of Alzheimer’s disease and vascular cognitive impairment and suggests that drugs targeting the target of rapamycin pathway could be used for the restoration of blood-brain barrier integrity in disease states.


Enhanced coverage of lipid analysis and imaging by matrix-assisted laser desorption/ionization mass spectrometry via a strategy with an optimized mixture of matrices.
Wang J, Wang C, Han X
Analytica Chimica Acta. 2018 Feb 13;1000:155-162. doi: 10.1016/j.aca.2017.09.046. Epub 2017 Oct 17.

Abstract:

In matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) analysis and imaging of lipids, comprehensive ionization of lipids simultaneously by a universal matrix is a very challenging problem. Ion suppression of readily ionizable lipids to others is common. To overcome this obstacle and enhance the coverage of MALDI MS analysis and imaging of lipids, we developed a novel strategy employing a mixture of matrices, each of which is capable of selective ionization of different lipid classes. Given that MALDI MS with either 9-aminoacridine (9-AA) or N-(1-naphthyl) ethylenediamine dihydrochloride (NEDC) yields weak in-source decay which is critical for analysis of complex biological samples and possesses orthogonal selectivity for ionization of lipid classes, we tested the mixtures of NEDC and 9-AA with different ratios for analysis of standard lipids and mouse brain lipid extracts. We determined 1.35 of NEDC/9-AA as an optimized molar ratio. It was demonstrated that an enhanced coverage with the optimized mixture was obtained, which enabled us to analyze and map all the major classes of phospholipids and sulfatide from either lipid extracts or tissue slides, respectively. We believe that this powerful novel strategy can enhance lipidomics analysis and MALDI MS imaging of lipids in a high-throughput and semi-quantitative fashion.


Filter publications